Hyperbel


Hyperbel

Hyperbel, v. gr, Hyperbole), ist neben der arabel u. Ellipse der dritte unter den Kegelschnitten. Sie entsteht durch den Schnitt eines Doppelkegels von kreisförmiger Basis mit einer Ebene, welche mit der Verlängerung der gegenüberliegenden Seite des Kegels über die gemeinschaftliche Spitze der beiden Kegel hinaus (nicht mit dieser Seite selbst) convergirt. Zu ihrer Definition benutzt man unter der großen Zahl ihrer Eigenschaften gewöhnlich die folgende: die H. ist eine krumme Linie von der Beschaffenheit, daß der Unterschied der Entfernungen eines jeden ihrer Punkte von zwei festen Punkten eine unveränderliche Größe ist. In der analytischen Geometrie wird sie meist durch folgende Gleichung zwischen rechtwinklichen Coordinaten gegeben: a2 y2 – b2 x2 = – a2 b2. Aus ihr geht hervor, daß für jede Abscisse, welche absolut genommen kleiner als a ist, die Ordinate imaginär wird, daß für x = ± a die Ordinate = 0 wird, daß für jede Abscisse, welche absolut genommen größer als a ist, die Ordinate zwei gleiche entgegengesetzte reelle Werthe hat, die mit zunehmendem x bis ins Unendliche wachsen, u. daß überdies zu gleichen entgegengesetzten Abscissen gleiche Ordinaten gehören, daß also die H. aus zwei nicht zusammenhängenden gegen die Ordinatenachse symmetrisch liegenden Zweigen besteht, von denen jeder wieder gegen die Abscissenachse symmetrisch ist, dieselbe im Abstande a nach der positiven u. resp. negativen Seite von Coordinatenanfang schneidet u. von da aus sich bis ins Unendliche von der Abscissenachse entfernt. Die Schneidungspunkte der beiden Zweige mit der Abscissenachse heißen die Scheitel der H.; die Verbindungslinie der beiden Scheitel, deren Länge = 2a, die Hauptachse; der in jener Gleichung zu Grunde liegende Anfangspunkt der Coordinaten, welcher die Hauptachse halbirt, der Mittelpunkt der H.; daher auch obige Gleichung die Mittelpunktsgleichung der H. genannt wird. Ein Abschnitt der Ordinatenachse von der Länge 2b, zur Hälfte nach der positiven, zur Hälfte nach der negativen Seite genommen, heißt die Nebenachse der H. Die letztere ist allerdings nur eine eingebildete Achse, da sie nicht durch Schneidungspunkte einer geraden Linie mit der Curve selbst begrenzt wird; doch ist die Bezeichnung durch die Ähnlichkeit obiger Gleichung mit der Mittelpunktsgleichung der Ellipse a2 y2 + b2 x2 = a2 b2 gerechtfertigt, in welcher b die kleine Achse der Ellipse vorstellt. Erhält in letzterer b einen imaginären Werth, so geht sie in die Gleichung der H. über, u. man kann daher sagen, die H. sei eine Ellipse mit imaginärer kleiner Achse. Ist die Nebenachse 2b, der Hauptachse 2a gleich, so heißt die H. eine gleichseitige u. ihre Gleichung ist mithin y2 – x2 = a2. Die beiden Punkte der Abscissenachse, welche vom Mittelpunkt beiderseits in die Entfernung e = √a2 + b2 liegen, heißen die Brennpunkte der H., das Verhältniß des Werthes e zu der halben Hauptachse a die Excentricität der H. Der Leitstrahl (Radius vector), d.h. die Verbindungslinie irgend eines Punktes der H. von der Abscisse x mit einem Brennpunkte, hat die Länge r = ex/a – a od. r = ex/a + a, je nachdem der Leitstrahl nach dem näheren od. entfernteren Brennpunkt führt; daher ist die Differenz der beiden Leitstrahlen jedes Punktes = 2a = der Hauptachse. Die Länge der auf der Abscissenachse senkrechten Sehne durch einen Brennpunkt[676] ist 2b3/a; sie wird gewöhnlich mit Einem Buchstaben p bezeichnet u. der Parameter der H. genannt. Es geht hieraus hervor, daß die Nebenachse 2b wie bei der Ellipse die mittlere Proportionale zwischen dem Parameter u. der Hauptachse 2a ist. Für eine gleichseitige H. ist der Parameter p = 2a = der Hauptachse. Transformirt man die Coordinaten so, daß man einen Scheitel der H. zum Coordinatenanfang nimmt, so gewinnt man die Scheitelgleichung der H.: a2 y2 = b2 x2 + 2b2 ax, od. y2 = px + (p/2a) x2. Hierauf beruht der Name der H.; denn während bei der Parabel, y2 = px, das Quadrat jeder Ordinate gleich dem Rechteck aus der zugehörigen Abscisse u. dem Parameter, bei der Ellipse aber, y2 = p x – (p/2a)x, kleiner als dieses Rechteck ist; so ist es bei der H. um denselben Werth größer. Transformirt man die Gleichung der H. für polare Coordinaten, indem man einen Brennpunkt zum Pol nimmt, auch e/a = ε setzt, so erhält man die Polargleichung der H. r = [a (ε2_–1)]/(1 + εcosφ), od. r = (1/2)p/(1 + εcosφ); sie geht für ε = 1 in die Gleichung der Parabel, für ε∠ 1 in die Ellipse über. Ist für eine H. die Hauptachse u. Nebenachse gegeben, so kann man beliebig viele Punkte derselben durch folgende Construction finden: man bestimmt zunächst den Abstand e = √a2 + b2 der Brennpunkte vom Mittelpunkte, zieht eine Linie = 2e, u. beschreibt aus dem einen Endpunkte derselben mit einem beliebigen Halbmesser ρ, aus dem anderen mit dem Halbmesser ρ + 2a Kreise; die Schneidungspunkte derselben sind immer Punkte der gesuchten H. Hiernach kann man sich auch eine H. auf mechanischem Wege durch einen fortlaufenden Zug so beschrieben denken: ein Lineal drehe sich um den einen, in seiner Kante liegenden Brennpunkt; ein Faden, um die Länge 2a kürzer als das Lineal vom Drehungspunkt an gerechnet, sei mit dem einen Ende in dem zweiten Brennpunkt, mit dem anderen an dem Endpunkt des Lineals befestigt, u. während der Drehung des Lineals drückt man mit einem Zeichenstift den Faden so an die Kante des Lineals an, daß sowohl der eine Theil desselben längs des Lineals, als der andere zum Brennpunkt führende straff sei, dann beschreibt der Stift eine solche Linie, daß für alle ihre Punkte die Differenz der Abstände von den beiden Brennpunkten gleich der Differenz der Länge des Lineals u. der Schnur, also = 2a ist. Eigenschaften der H.: Die Gleichung der Tangente an der H. im Punkte, dessen Coordinaten x1 y1 sind, ist a1 y1 y – b2 x1 x = – a2 b2, daher die Abscisse ihres Durchschnittspunkts mit der Abscissenachse = a2/x1, wonach sich die Tangente für jeden beliebigen Punkt sehr leicht construiren läßt. Es geht hieraus zugleich hervor, daß die Durchschnittspunkte aller Tangenten mit der Abscissenachse zwischen dem Mittelpunkt u. Scheitel liegen u. sich dem Mittelpunkt um so mehr nähern, je entfernter der Berührungspunkt ist Für einen unendlich entfernten Berührungspunkt geht die Tangente durch den Mittelpunkt selbst u. bildet mit der Abscissenachse einen Winkel β, dessen trigonometrische Tangente = ( + b)/(- a). Diese zwei unendlich langen, durch den Mittelpunkt gehenden Linien, welchen beide Zweige der H. sich ins Unendliche nähern, ohne sie je zu schneiden, heißen die Asymptoten der H. Der Winkel 2β, den sie unter einander bilden, heißt der Asymptotenwinkel; derselbe ist für die gleichseitige H. = einem rechten. Die auf die Asymptoten als Coordinatenachsen bezogene sogenannte Asymptotengleichung der H. ist t u. = 1/4 (a2 + b2); der auf der rechten Seite dieser Gleichung vorkommende Werth heißt die Potenz der H. Der Winkel, den die beiden Leitstrahlen eines Punktes mit einander bilden, wird durch die Tangente an diesem Punkte halbirt. Wenn daher ein Spiegel hyperbolisch gekrümmt ist, so werden alle von einem Brennpunkte aus kommenden Strahlen so reflectirt, daß sie von dem anderen Brennpunkte herzukommen scheinen; daher die Benennung dieser Punkte. Jede durch den Mittelpunkt gehende, durch die H. beiderseits begrenzte gerade Linie wird im Mittelpunkt halbirt u. ist ein Durchmesser, d.h. ihre Verlängerungen halbiren alle Sehnen beider Hyperbelzweige, welche den durch ihre Endpunkte gelegten Tangenten parallel sind, u. umgekehrt werden alle zu jenem Durchmesser parallelen Sehnen durch einen zweiten Durchmesser halbirt, der jenen Tangenten parallel ist Je zwei solche Durchmesser heißen conjugirte od. verbundene Durchmesser, der von denselben gebildete Winkel der Verbindungswinkel. Das Parallelogramm, welches die mit zwei conjugirten Durchmessern parallelen Tangenten bilden, ist immer gleich dem Rechteck aus den Achsen, od. wenn also A u. B die conjugirten Durchmesser, γ ihr Verbindungswinkel ist, so ist A B sin γ = a b. H-n höherer Art, von Einigen Hyperboloïden genannt, sind Curven von der Gleichung a ym + n = b xm (c + x)n. Sie entstehen durch den ebenen Schnitt eines Konoids, dessen Grundfläche nicht wie bei der H. ein Kreis, sondern eine Figur von der Gleichung ym + n = (c – x)n xm ist. Doch versteht man zuweilen unter Hy Hyperboloid auch ein hyperbolisches Konoid. 2) Rede, welche mehr (eigentliche H.) od. weniger (Meiosis) behauptet, als eigentlich behauptet werden kann u. soll, z.B.: das Blut floß in Strömen auf dem Schlachtfeld. Je phantasiereicher ein Volk ist, um so mehr liebt es die H.; durch zu große Vermehrung derselben entstehen Carricaturen, welche durch ihre lächerliche Gestalt den beabsichtigten Effect vernichten. Vgl. G. Hermann, De hyperbole, Lpz. 1829.


Pierer's Lexicon. 1857–1865.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Hyperbel — Sf per. Wortschatz fach. (18. Jh.) Entlehnung. Entlehnt aus l. hyperbole, dieses aus gr. hyperbolḗ, eigentlich das darüber hinaus Werfen zu gr. bállein werfen . Gemeint ist in der Rhetorik eine Übertreibung, in der Geometrie eine Figur, die über… …   Etymologisches Wörterbuch der deutschen sprache

  • Hypérbel — (v. griech. hyperbole, »Überschuß«), in der Geometrie eine zur Klasse der Kegelschnitte (s. d.) gehörige Kurve, die durch zwei feste Punkte F und F (s. Figur), die sogen. Brennpunkte, und durch eine Gerade von gegebener Länge 20. bestimmt ist,… …   Meyers Großes Konversations-Lexikon

  • Hyperbel — Hyperbel, s. Kegelschnitte …   Lexikon der gesamten Technik

  • Hypérbel — (grch.), in der Geometrie ein Kegelschnitt, der entsteht, wenn die schneidende Ebene beide Teile des Doppelkegels trifft, besteht aus zwei voneinander getrennten, ins Unendliche fortlaufenden, zur Linie Y [Abb. 840] symmetrischen Zweigen. Auf der …   Kleines Konversations-Lexikon

  • Hyperbel — Hyperbel, die Redefigur der absichtlichen Vergrößerung oder Verkleinerung eines Gegenstandes, also Carikirung des Bildes im Verhältniß zu seiner Umgebung; hyperbolisch, übertrieben B–l …   Damen Conversations Lexikon

  • Hyperbel — Hyperbel, die beim Reden u. Dichten alle Augenblicke vorkommende Figur der Uebertreibung, welche namentlich bei Angabe von Thatsachen und in Bildern ihre Rolle spielt. H.n sind z.B.: ich fühle eine Armee in meiner Faust; sie ist ein Engel u.s.w.… …   Herders Conversations-Lexikon

  • Hyperbel — Übertreibung * * * Hy|pẹr|bel 〈f. 21〉 1. 〈Geom.〉 unendliche ebene Kurve aus zwei getrennten Ästen, sie besteht aus allen Punkten, deren Abstände von zwei bestimmten Punkten eine konstante Differenz haben 2. 〈Rhet.〉 sprachliche, dichterische… …   Universal-Lexikon

  • Hyperbel — Die Hyperbel (altgriechisch ὑπερβολή, hýperbolé, „Übertreffung, Übertreibung“) bezeichnet: in der Literatur eine Übertreibung, siehe Hyperbel (Sprache) in der Mathematik ein Kegelschnitt, siehe Hyperbel (Mathematik) Siehe auch: Hyperbelbahn… …   Deutsch Wikipedia

  • Hyperbel — hiperbolė statusas T sritis fizika atitikmenys: angl. hyperbola vok. Hyperbel, f rus. гипербола, f pranc. hyperbole, f …   Fizikos terminų žodynas

  • Hyperbel — См. ipèrbole …   Пятиязычный словарь лингвистических терминов